Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
One Health ; 11: 100187, 2020 Dec 20.
Article in English | MEDLINE | ID: covidwho-899395

ABSTRACT

The management of public health and the preparedness for health emergencies partly rely on the collection and analysis of surveillance data, which become crucial in the context of an emergency such as the pandemic caused by COVID-19. For COVID-19, typically, numerous national and global initiatives have been set up from this perspective. Here, we propose to develop a shared vision of the country-level outbreaks during a pandemic, by enhancing, at the international scale, the foundations of the analysis of surveillance data and by adopting a unified and real-time approach to monitor and forecast the outbreak across time and across the world. This proposal, rolled out as a web platform, should contribute to strengthen epidemiological understanding, sanitary democracy as well as global and local responses to pandemics.

2.
PLoS One ; 15(9): e0238410, 2020.
Article in English | MEDLINE | ID: covidwho-760695

ABSTRACT

Discrepancies in population structures, decision making, health systems and numerous other factors result in various COVID-19-mortality dynamics at country scale, and make the forecast of deaths in a country under focus challenging. However, mortality dynamics of countries that are ahead of time implicitly include these factors and can be used as real-life competing predicting models. We precisely propose such a data-driven approach implemented in a publicly available web app timely providing mortality curves comparisons and real-time short-term forecasts for about 100 countries. Here, the approach is applied to compare the mortality trajectories of second-line and front-line European countries facing the COVID-19 epidemic wave. Using data up to mid-April, we show that the second-line countries generally followed relatively mild mortality curves rather than fast and severe ones. Thus, the continuation, after mid-April, of the COVID-19 wave across Europe was likely to be mitigated and not as strong as it was in most of the front-line countries first impacted by the wave (this prediction is corroborated by posterior data).


Subject(s)
Coronavirus Infections/mortality , Models, Theoretical , Pneumonia, Viral/mortality , COVID-19 , Coronavirus Infections/epidemiology , Humans , Pandemics , Pneumonia, Viral/epidemiology
3.
Front Med (Lausanne) ; 7: 274, 2020.
Article in English | MEDLINE | ID: covidwho-615616

ABSTRACT

The COVID-19 epidemic was reported in the Hubei province in China in December 2019 and then spread around the world reaching the pandemic stage at the beginning of March 2020. Since then, several countries went into lockdown. Using a mechanistic-statistical formalism, we estimate the effect of the lockdown in France on the contact rate and the effective reproduction number R e of the COVID-19. We obtain a reduction by a factor 7 (R e = 0.47, 95%-CI: 0.45-0.50), compared to the estimates carried out in France at the early stage of the epidemic. We also estimate the fraction of the population that would be infected by the beginning of May, at the official date at which the lockdown should be relaxed. We find a fraction of 3.7% (95%-CI: 3.0-4.8%) of the total French population, without taking into account the number of recovered individuals before April 1st, which is not known. This proportion is seemingly too low to reach herd immunity. Thus, even if the lockdown strongly mitigated the first epidemic wave, keeping a low value of R e is crucial to avoid an uncontrolled second wave (initiated with much more infectious cases than the first wave) and to hence avoid the saturation of hospital facilities.

4.
Biology (Basel) ; 9(5)2020 May 08.
Article in English | MEDLINE | ID: covidwho-209944

ABSTRACT

The number of screening tests carried out in France and the methodology used to target the patients tested do not allow for a direct computation of the actual number of cases and the infection fatality ratio (IFR). The main objective of this work is to estimate the actual number of people infected with COVID-19 and to deduce the IFR during the observation window in France. We develop a `mechanistic-statistical' approach coupling a SIR epidemiological model describing the unobserved epidemiological dynamics, a probabilistic model describing the data acquisition process and a statistical inference method. The actual number of infected cases in France is probably higher than the observations: we find here a factor ×8 (95%-CI: 5-12) which leads to an IFR in France of 0.5% (95%-CI: 0.3-0.8) based on hospital death counting data. Adjusting for the number of deaths in nursing homes, we obtain an IFR of 0.8% (95%-CI: 0.45-1.25). This IFR is consistent with previous findings in China (0.66%) and in the UK (0.9%) and lower than the value previously computed on the Diamond Princess cruse ship data (1.3%).

SELECTION OF CITATIONS
SEARCH DETAIL